#### Equicontinuous factors of S-adic subshifts

Bastián Espinoza U. de Liège

Roscoff workshop: Symbolic dynamics and arithmetic expansions

Joint work with V. Berthé, A. Bustos, P. Cecchi & N. Mañibo



1. Equicontinuous factors

2. The Maximal Equicontinuous Factor

3. The Kronecker factor



- ▶ X is compact and  $T: X \to X$  is a homeomorphism;
- ▶ { $T^n x : n \in \mathbb{Z}$ } is dense within  $X, \forall x \in X$ .

#### Simplest case: equicontinuous systems.

Let G be a compact abelian group and a ∈ G. Then, (G, x → x + a) is called an equicontinuous system.

- An effective method for studying t.d.s. is through extensions and factors.
- A factor between the t.d.s. (X, T) and (Y, S) is a continuous map  $\pi: X \to Y$  s.t.  $\pi \circ T = S \circ \pi$ .

**Definition.** Any minimal t.d.s. (X, T) has a unique **maximal** equicontinuous factor (MEF).

Any other equicontinuous factor of (X, T) is a factor itself of the MEF.

- An effective method for studying t.d.s. is through extensions and factors.
- A factor between the t.d.s. (X, T) and (Y, S) is a continuous map  $\pi: X \to Y$  s.t.  $\pi \circ T = S \circ \pi$ .

**Definition.** Any minimal t.d.s. (X, T) has a unique **maximal** equicontinuous factor (MEF).

Any other equicontinuous factor of (X, T) is a factor itself of the MEF.

The MEF captures important dynamical information.

- Weak mixing: ∃x, y ∈ X s.t. {(T<sup>n</sup>x, T<sup>n</sup>y) : n ∈ Z} is dense in X × X iff the MEF is the trivial one-point system.
- Fibers  $\pi^{-1}(y)$  related to nullness, tameness, among others.
- Pisot conjecture states that Pistot substitutional systems are isomorphic to their MEF.

$$\blacktriangleright \mathbb{T} = \{ z \in \mathbb{C} : |z| = 1 \}.$$

If there exists λ ∈ T and a factor map g<sub>λ</sub>: (X, T) → (T, ·λ), then λ is called a continuous eigenvalue.

The set of continuous eigenvalues has the structure of a discrete group, and its Pontryagin dual can be identified with the MEF.

- For any t.d.s. (X, T) there is a (typically non-unique) ergodic measure μ.
- This gives rise of an ergodic measure-preserving system (X, T, μ).
- Analogous notions for equicontinuous systems, factors, eigenvalues and MEF (which in this case are called measurable eigenvalues and the Kronecker factor!)

- For any t.d.s. (X, T) there is a (typically non-unique) ergodic measure μ.
- This gives rise of an ergodic measure-preserving system (X, T, μ).
- Analogous notions for equicontinuous systems, factors, eigenvalues and MEF (which in this case are called measurable eigenvalues and the Kronecker factor!)
- Intrincate interplay between topological and measure-theoretic notions.
- Objective: Study the MEF (Kronecker) factors of minimal (ergodic) subshifts.



1. Equicontinuous factors

2. The Maximal Equicontinuous Factor

3. The Kronecker factor

Early examples of minimal systems: substitutional subshifts.

**Subshifts:** (X, S), with S the **shift** and  $X \subseteq A^{\mathbb{Z}}$  closed and S-invariant.

▶ Its language  $\mathcal{L}(X) = \{x_i x_{i+1} \dots x_{j-1} : x \in X, i < j\}.$ 

Early examples of minimal systems: substitutional subshifts.

**Subshifts:** (X, S), with S the **shift** and  $X \subseteq A^{\mathbb{Z}}$  closed and S-invariant.

▶ Its language  $\mathcal{L}(X) = \{x_i x_{i+1} \dots x_{j-1} : x \in X, i < j\}.$ 

#### Substitutions.

- ▶ Endomorphisms  $\tau : \mathcal{A}^* \to \mathcal{A}^*$  s.t.  $\tau(a) \neq 1, \forall a \in \mathcal{A}$ .
- ▶ We assume **primitivity**:  $\exists N > 0$ ,  $\forall a, b \in A$ , *a* appears in  $\tau^{N}(b)$ .
- $\mathcal{L} = \{ u : u \text{ occurs in } \tau^n(a) \text{ for some } n > 0, a \in \mathcal{A} \}.$
- ► Let  $X_{\tau} = \{x \in \mathcal{A}^{\mathbb{Z}} : \forall k, x_{-k}x_{-k+1} \dots x_k \in \mathcal{L}\}.$
- $\triangleright$   $X_{\tau}$  is minimal and has a unique ergodic measure  $\mu$ .

Consider  $\mathcal{A} = \{0,1,2\}$  and

$$au\colon egin{cases} 0&\mapsto 010\ 1&\mapsto 102\ 2&\mapsto 201 \end{cases}$$

Consider  $\mathcal{A} = \{0,1,2\}$  and

$$\tau \colon \begin{cases} 0 & \mapsto 010 \\ 1 & \mapsto 102 \\ 2 & \mapsto 201 \end{cases}$$



Consider  $\mathcal{A} = \{0, 1, 2\}$  and

$$\tau: \begin{cases} 0 & \mapsto 010 \\ 1 & \mapsto 102 \\ 2 & \mapsto 201 \end{cases}$$





Consider  $\mathcal{A} = \{0,1,2\}$  and

$$au : \begin{cases} 0 & \mapsto 010 \ 1 & \mapsto 102 \ 2 & \mapsto 201 \end{cases}$$
 $y = \dots \boxed{\begin{array}{c} 0 & 1 & 0 \ 1 & 0 & 1 \end{array}} \dots \in X_{ au}$ 
 $x = \dots \boxed{\begin{array}{c} 0 & 1 & 0 \ 1 & 0 & 1 \end{array}} \dots \in X_{ au}$ 

 $x=S^2\tau(y).$ 

# Early results: F.M. Dekking\*

▶  $\tau$  of constant-length:  $|\tau| := |\tau(a)| = |\tau(b)|, \forall a, b \in A$ .

• Example.  $\tau: 0 \mapsto 010, 1 \mapsto 102, 2 \mapsto 201.$ 

<sup>\*</sup>Dekking, F.M. The spectrum of dynamical systems arising from substitutions of constant length. 1978

# Early results: F.M. Dekking\*

▶  $\tau$  of constant-length:  $|\tau| := |\tau(a)| = |\tau(b)|, \forall a, b \in A$ .

Example. 
$$\tau: 0 \mapsto 010, 1 \mapsto 102, 2 \mapsto 201.$$

**Theorem.** There exists  $h(\tau) \in \mathbb{N}$  (the **height**) s.t.

 $\operatorname{Kro}(X_{\tau}) = \mathbb{Z}_{|\tau|} \times \mathbb{Z}/h(\tau)\mathbb{Z}, \quad (\mathbb{Z}_{|\tau|} = |\tau| \text{-adic integers})$ 

Moreover,  $\exists c(\tau) \in \mathbb{N}$  (the **column number**) s.t.

$$\pi_{\mathrm{Kro}} \colon X_{\tau} \to \mathrm{Kro}(X_{\tau})$$

satisfies  $\operatorname{Haar}(\{y \in \operatorname{Kro}(X_{\tau}) : \#\pi_{\operatorname{Kro}}^{-1}(y) = c(\tau)\}) = 1.$ 

\*Dekking, F.M. The spectrum of dynamical systems arising from substitutions of constant length. 1978

# Variable length: B. Host<sup>†</sup>

The MEF and Kronecker factors coincide.

▶ A (letter-) **coboundary** in  $X_{\tau}$  is a morphism  $c: \mathcal{A}^* \to \mathbb{T}$  s.t.  $\forall a \in \mathcal{A}, \forall aua \in \mathcal{L}(X_{\tau}) : c(au) = 1.$ 

• Let  $\ell_n \in \mathbb{Z}^A$  defined by  $\ell_n(a) = |\tau^n(a)|$ .

<sup>&</sup>lt;sup>†</sup>Valeurs propres des systemes dynamiques definis par des substitutions de longueur variable. 1986.

# Variable length: B. Host<sup>†</sup>

The MEF and Kronecker factors coincide.

▶ A (letter-) **coboundary** in  $X_{\tau}$  is a morphism  $c: \mathcal{A}^* \to \mathbb{T}$  s.t.  $\forall a \in \mathcal{A}, \forall aua \in \mathcal{L}(X_{\tau}) : c(au) = 1.$ 

• Let  $\ell_n \in \mathbb{Z}^{\mathcal{A}}$  defined by  $\ell_n(a) = |\tau^n(a)|$ .

**Theorem.**  $\lambda \in \mathbb{T}$  is an eigenvalue of  $X_{\tau}$  iff there is p > 0 and a coboundary c in  $X_{\tau}$  s.t.

$$c(a) = \lim_{n \to \infty} \lambda^{\ell_{pn}(a)}, \quad \forall a \in \mathcal{A}.$$

The fibers are much more difficult to understand.

<sup>&</sup>lt;sup>†</sup>Valeurs propres des systemes dynamiques definis par des substitutions de longueur variable. 1986.

## Variable length: B. Host

**Theorem.**  $\lambda \in \mathbb{T}$  is an eigenvalue of  $X_{\tau}$  iff there is p > 0 and a coboundary c in  $X_{\tau}$  s.t.

$$c(a) = \lim_{n \to \infty} \lambda^{\ell_{pn}(a)}, \quad \forall a \in \mathcal{A}.$$

Let  $\mathcal{A} = \{0, 1, 2, 3, 4\}$  and  $\tau : \begin{cases} 0 & \mapsto 34 \\ 1 & \mapsto 01 \\ 2 & \mapsto 234 \\ 3 & \mapsto 34 \\ 4 & \mapsto 012 \end{cases}$ 

Then exp(2πi√2) is an eigenvalue value defining the coboundary c(a) = 1 if a ≠ 1, c(1) = 0.707....

## Variable length: B. Host

**Theorem.**  $\lambda \in \mathbb{T}$  is an eigenvalue of  $X_{\tau}$  iff there is p > 0 and a coboundary c in  $X_{\tau}$  s.t.

$$c(a) = \lim_{n \to \infty} \lambda^{\ell_{pn}(a)}, \quad \forall a \in \mathcal{A}.$$

Let  $\mathcal{A} = \{0, 1, 2, 3, 4\}$  and  $\begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix}$ 

$$\tau: \begin{cases} 1 & \mapsto 01 \\ 2 & \mapsto 234 \\ 3 & \mapsto 34 \\ 4 & \mapsto 012 \end{cases}$$

 $\mapsto$  34

- ► Then  $\exp(2\pi i\sqrt{2})$  is an eigenvalue value defining the coboundary c(a) = 1 if  $a \neq 1$ , c(1) = 0.707...
- In fact,  $X_{\tau}$  is (conjugate to) the Sturmian of angle  $\sqrt{2}$ .

# Beyond substitutions: S-adic formalism

Substitutions  $\tau : \mathcal{A}^* \to \mathcal{B}^*$  between **different** alphabets.

• A directive sequence is a sequence of substitutions  $\tau = (\tau_n : n \ge 0)$  of the form

$$\mathcal{A}_0^* \xleftarrow{\tau_0} \mathcal{A}_1^* \xleftarrow{\tau_1} \mathcal{A}_2^* \xleftarrow{\tau_2} \mathcal{A}_3^* \xleftarrow{\tau_3} \mathcal{A}_4^* \xleftarrow{\tau_4} \dots$$

Abbreviate τ<sub>n,N</sub> = τ<sub>n</sub> ∘ τ<sub>n+1</sub> ∘ · · · ∘ τ<sub>N-1</sub>.
Assume that τ is primitive: ∀n ≥ 0, ∃N > n s.t. a appears in τ<sub>n,N</sub>(b), ∀a ∈ A<sub>n</sub>, b ∈ A<sub>N</sub>.

## Beyond substitutions: S-adic formalism

• Substitutions  $\tau : \mathcal{A}^* \to \mathcal{B}^*$  between **different** alphabets.

A directive sequence is a sequence of substitutions  $\tau = (\tau_n : n \ge 0)$  of the form

$$\mathcal{A}_0^* \xleftarrow{\tau_0} \mathcal{A}_1^* \xleftarrow{\tau_1} \mathcal{A}_2^* \xleftarrow{\tau_2} \mathcal{A}_3^* \xleftarrow{\tau_3} \mathcal{A}_4^* \xleftarrow{\tau_4} \dots$$

• Abbreviate  $\tau_{n,N} = \tau_n \circ \tau_{n+1} \circ \cdots \circ \tau_{N-1}$ .

Assume that  $\tau$  is **primitive**:  $\forall n \ge 0, \exists N > n$  s.t.

a appears in 
$$\tau_{n,N}(b)$$
,  $\forall a \in \mathcal{A}_n$ ,  $b \in \mathcal{A}_N$ .

**Definition.** au generates the **S**-adic subshift:

$$X_{ au} = \{x \in \mathcal{A}_0^{\mathbb{Z}} : orall k, x_{[-k,k]} ext{ appears in } au_{0,n}(a)$$
 for some  $n > 0, a \in \mathcal{A}_n\}.$ 

$$X^{(n)}_{ au} = X_{S^n au}$$
, with  $S^n au = ( au_n, au_{n+1}, \dots)$ .

$$\theta_0 \colon \begin{cases} 0 & \mapsto 01 \\ 1 & \mapsto 0 \end{cases} \qquad \theta_1 \colon \begin{cases} 0 & \mapsto 1 \\ 1 & \mapsto 10 \end{cases}$$

$$\begin{array}{c}
\theta_1 \\
\theta_0 \\
\theta_0 \\
\theta_0 \\
\theta_1 \\
\theta_1 \\
\theta_0 \\
\theta_0 \\
\end{array}$$

$$\theta_0: \begin{cases} 0 & \mapsto 01 \\ 1 & \mapsto 0 \end{cases} \qquad \theta_1: \begin{cases} 0 & \mapsto 1 \\ 1 & \mapsto 10 \end{cases}$$



$$\theta_0: \begin{cases} 0 & \mapsto 01 \\ 1 & \mapsto 0 \end{cases} \qquad \theta_1: \begin{cases} 0 & \mapsto 1 \\ 1 & \mapsto 10 \end{cases}$$



$$\theta_0: \begin{cases} 0 & \mapsto 01 \\ 1 & \mapsto 0 \end{cases} \qquad \theta_1: \begin{cases} 0 & \mapsto 1 \\ 1 & \mapsto 10 \end{cases}$$



$$\theta_0: \begin{cases} 0 & \mapsto 01 \\ 1 & \mapsto 0 \end{cases} \qquad \theta_1: \begin{cases} 0 & \mapsto 1 \\ 1 & \mapsto 10 \end{cases}$$



$$\theta_0: \begin{cases} 0 & \mapsto 01 \\ 1 & \mapsto 0 \end{cases} \qquad \theta_1: \begin{cases} 0 & \mapsto 1 \\ 1 & \mapsto 10 \end{cases}$$



$$\theta_0: \begin{cases} 0 & \mapsto 01 \\ 1 & \mapsto 0 \end{cases} \qquad \theta_1: \begin{cases} 0 & \mapsto 1 \\ 1 & \mapsto 10 \end{cases}$$



Beyond substitutions: S-adic formalism

► We always consider **recognizable** directive sequences.

>  $X_{\tau}$  is minimal, but it might have many ergodic measures.

Beyond substitutions: S-adic formalism

► We always consider **recognizable** directive sequences.

>  $X_{\tau}$  is minimal, but it might have many ergodic measures.

• Any minimal subshift X is equal to  $X_{\tau}$  for some  $\tau$ .

A contraction has the form  $\tau' = (\tau_{n_k, n_{k+1}})_{k \ge 0}$  for  $0 = n_0 < n_1 < \dots$ 

# Linearly recurrent subshifts (LR)

- X is linearly recurrent iff X = X<sub>τ</sub> for some τ s.t.
  finitary: there are finitely many different τ<sub>n</sub>.
  τ is strongly primitive: a occurs in τ<sub>n</sub>(b), ∀n, a, b.
  the τ<sub>n</sub> are proper: ∃a ∈ A<sub>n</sub> s.t. τ<sub>n</sub>(b) starts with a, ∀b.
- $\blacktriangleright \ \tau \colon \mathbf{0} \mapsto \mathbf{01}, \ \mathbf{1} \mapsto \mathbf{02}, \ \mathbf{2} \mapsto \mathbf{0}.$
- In Sturmians: substitutions ↔ quadratic irrationals; LR ↔ bounded coefficients in the continued fraction.

# Linearly recurrent subshifts (LR)

X is linearly recurrent iff X = X<sub>τ</sub> for some τ s.t.
finitary: there are finitely many different τ<sub>n</sub>.
τ is strongly primitive: a occurs in τ<sub>n</sub>(b), ∀n, a, b.
the τ<sub>n</sub> are proper: ∃a ∈ A<sub>n</sub> s.t. τ<sub>n</sub>(b) starts with a, ∀b.

$$\blacktriangleright \ \tau: \mathbf{0} \mapsto \mathbf{01}, \ \mathbf{1} \mapsto \mathbf{02}, \ \mathbf{2} \mapsto \mathbf{0}.$$

In Sturmians: substitutions ↔ quadratic irrationals; LR ↔ bounded coefficients in the continued fraction.

**Theorem.**  $\lambda \in \mathbb{T}$  is a continuous eigenvalue **iff**<sup>*a*</sup>

$$\sum_{n\geq 0} \max_{a\in \mathcal{A}_n} |\lambda^{|\tau_{0,n}(a)|} - 1| < \infty.$$

<sup>a</sup>Cortéz, Durand, Host, Maass. Continuous and measurable eigenfunctions of linearly recurrent dynamical Cantor systems. 2003.

# Linearly recurrent subshifts (LR)

► LR systems have a unique ergodic measure.

Theorem. 
$$\lambda \in \mathbb{T}$$
 is a measurable eigenvalue iff
$$\sum_{n \geq 0} \max_{a \in \mathcal{A}_n} |\lambda^{|\tau_{0,n}(a)|} - 1|^2 < \infty.$$

Continuous and measurable eigenvalues might differ!

# Topological developments

• Let au be a strongly primitive and proper directive sequence.

• Let pref(u) be the set of prefixes of  $u \in \mathcal{A}^*$ ;  $\ell_n(u) = |\tau_{0,n}(u)|$ .

**Theorem.**  $\lambda \in \mathbb{T}$  is a continuous eigenvalue **iff**<sup>*ab*</sup>

$$\sum_{n\geq 0} \max_{\mathsf{a}\in\mathcal{A}_{n+1}} \max_{u\mathsf{a}\in\mathrm{pref}( au_n(\mathsf{a}))} |\lambda^{\ell_n(u)}-1| <\infty.$$

<sup>a</sup>Bressaud, Durand, Maass. Eigenvalues of finite rank Bratteli-Vershik systems. 2012.

<sup>b</sup>Durand, Frank, Maass. Eigenvalues of minimal Cantor systems. 2015.

#### Interval Exchange Transformations:

- Their symbolic codings have nice S-adic expansions.
- S-adic encodes the Rauzy induction.
- Access to Theichmuller related machinery.

#### Interval Exchange Transformations:

- Their symbolic codings have nice S-adic expansions.
- S-adic encodes the Rauzy induction.
- Access to Theichmuller related machinery.

#### Linear involutions.

- Symbolic codings have non-proper S-adic expansions.
- S-adic encodes the Rauzy induction.
- No access to Theichmuller machinery due to symbolic techniques relying on properness.

### Coboundaries

- A morphism c: A<sup>\*</sup> → T is a coboundary in X if c(au) = 1, ∀aua ∈ L(X).
- ▶ There exists  $\rho: \mathcal{A} \to \mathbb{T}$  s.t.  $\rho(a)c(a) = \rho(b), \forall ab \in \mathcal{L}(X).$

#### Coboundaries

- A morphism c: A<sup>\*</sup> → T is a coboundary in X if c(au) = 1, ∀aua ∈ L(X).
- ▶ There exists  $\rho: \mathcal{A} \to \mathbb{T}$  s.t.  $\rho(a)c(a) = \rho(b), \forall ab \in \mathcal{L}(X).$
- ▶ Let  $\mathcal{E}(X)$  be graph with vertices  $\{a_L, a_R : a \in \mathcal{A}\}$  and edges  $(a_L, b_R)$  for  $ab \in \mathcal{L}(X)$ .
- ► Ex. Let X be the Sturmian of angle  $\frac{\sqrt{5}-1}{2}$ . So,  $x = \dots 010010 \dots \in X$  and  $\mathcal{L}(X) \cap \mathcal{A}^2 = \{00, 01, 10\}.$



#### Coboundaries

A morphism c: A<sup>\*</sup> → T is a coboundary in X if c(au) = 1, ∀aua ∈ L(X).

▶ There exists 
$$\rho \colon \mathcal{A} \to \mathbb{T}$$
 s.t.  $\rho(a)c(a) = \rho(b)$ ,  $\forall ab \in \mathcal{L}(X)$ .

- ▶ Let  $\mathcal{E}(X)$  be graph with vertices  $\{a_L, a_R : a \in \mathcal{A}\}$  and edges  $(a_L, b_R)$  for  $ab \in \mathcal{L}(X)$ .
- Conversely, if ρ: A → T satisfies ρ(a) = ρ(a') for all a<sub>R</sub>, a'<sub>R</sub> in the same connected component of E(X), then c(a) := ρ(b)ρ(a)<sup>-1</sup> defines a coboundary in X.

Let  $\tau$  be **finitary** (there are finitely many  $\tau_n$ ), straight and with fully essential words.

**Theorem (Berthé, Cecchi, Yassawi 2022).** If  $\lambda$  is a continuous eigenvalue, then

 $c(a) = \lim_{n \to \infty} \lambda^{\ell_n(a)}$  defines a weak S-adic coboundary.

A sufficient condition is provided as well.

• Let au be primitive.

**Theorem (Berthé, Cecchi, E.)**  $\lambda$  is a continuous eigenvalue of  $X_{\tau}$  iff there exists  $(\rho_n(a) \in \mathbb{T} : a \in \mathcal{A}_n)_{n \ge 0}$  s.t.

$$\max_{a_k \in \mathcal{A}_k} \max_{u_k a_k \in \operatorname{pref}(\tau_k(a_{k+1}))} |\lambda^{\sum_{n \leq k < N} \ell_k(u_k)} - \rho_N(a_N)| \qquad (\triangle)$$

converges to 0 as  $n, N \rightarrow \infty$ , *i.e.*,

 $\forall \epsilon > 0, \forall n \gg_{\epsilon} 1 : (\triangle) < \epsilon \text{ for all large enough } N > n.$ 

Simpler expressions if  $\tau$  is strongly primitive/finitary/proper. The  $\rho_n(a)$  do **not** always define coboundaries.

CO

#### • Let $\tau$ be strongly primitive.

**Theorem (Berthé, Cecchi, E.)**  $\lambda$  is a continuous eigenvalue of  $X_{\tau}$  iff there exists  $(\rho_n(a) \in \mathbb{T} : a \in \mathcal{A}_n)_{n \geq 0}$  s.t.

$$\begin{split} &\sum_{n \leq k < N} \max_{a_k \in \mathcal{A}_k} \max_{u_k a_k \in \operatorname{pref}(\tau_k(a_{k+1}))} \left| \lambda^{\ell_k(u_k)} - \rho_k(a_k) \right| \quad (\triangle) \\ &\text{nverges to 0 as } n, N \to \infty, \text{ i.e.,} \\ &\forall \epsilon > 0, \forall n \gg_{\epsilon} 1 : (\triangle) < \epsilon \text{ for all large enough } N > n. \end{split}$$

Simpler expressions if  $\tau$  is strongly primitive/finitary/proper. The  $\rho_n(a)$  do **not** always define coboundaries.

• Let  $\tau$  be primitive and proper.

**Theorem (Berthé, Cecchi, E.)**  $\lambda$  is a continuous eigenvalue of  $X_{\tau}$  iff

$$\max_{a_k \in \mathcal{A}_k} \max_{u_k a_k \in \operatorname{pref}(\tau_k(a_{k+1}))} \left| \lambda^{\sum_{n \le k < N} \ell_k(u_k)} - 1 \right| \qquad (\triangle)$$

converges to 0 as  $n, N \rightarrow \infty$ , *i.e.*,

 $\forall \epsilon > 0, \forall n \gg_{\epsilon} 1 : (\triangle) < \epsilon \text{ for all large enough } N > n.$ 

Simpler expressions if  $\tau$  is strongly primitive/finitary/proper. The  $\rho_n(a)$  do **not** always define coboundaries.

## Finite alphabet rank

• Assume that  $\sup_{n\to\infty} #A_n < \infty$  (finite alphabet rank).

• Then, the  $\rho_n(a)$  define coboundaries in  $X_{\tau}^{(n)}$ .

**Theorem (Berthé, Cecchi, E.)**  $\lambda$  is a continuous eigenvalue of  $X_{\tau}$  iff there exist coboundaries  $c_n$  in  $X_{\tau}^{(n)}$  s.t.

$$\max_{a_k \in \mathcal{A}_k} \max_{u_k a_k \in \operatorname{pref}(\tau_k(a_{k+1}))} \left| \lambda^{\sum_{n \le k < N} \ell_k(u_k)} - \prod_{n \le k < N} c_k(u_k) \right| \qquad (\triangle)$$

converges to 0 as  $n, N \rightarrow \infty$ , *i.e.*,

 $\forall \epsilon > 0, \forall n \gg_{\epsilon} 1 : (\triangle) < \epsilon \text{ for all large enough } N > n.$ 

Similar simpler expressions if  $\tau$  is strongly primitive/finitary/proper.

## Finite alphabet rank

- We are led to study  $(\mathcal{E}(X_{\tau}^{(n)}): n \geq 0).$
- Any ρ: A → T defining a cob. in X takes at most cc(E(X)) different values.

<sup>&</sup>lt;sup>‡</sup>Already in Berthé, Yassawi & Cecchi's paper

### Finite alphabet rank

- We are led to study  $(\mathcal{E}(X_{\tau}^{(n)}): n \ge 0).$
- Any ρ: A → T defining a cob. in X takes at most cc(E(X)) different values.
- Examples:
  - ► IETs:  $\mathcal{E}(X_{\tau}^{(n)})$  is a tree; hence, all coboundaries are trivial  $c_n \equiv 1$ .
  - Linear involutions: *E*(X<sup>(n)</sup><sub>τ</sub>) has two connected components; hence, #{ρ<sub>n</sub>(a) : a ∈ A<sub>n</sub>} = 2.
  - ▶ Brun substitutions: For  $i, j \in \{0, 1, \dots, d-1\}$ ,  $i \neq j$ :

$$\sigma_{i,j} \colon egin{cases} j & \mapsto ij \ k & \mapsto k ext{ if } k 
eq j \end{cases}$$

Then,  $\mathcal{E}(X_{\tau}^{(n)})$  is connected; hence,  $c_n \equiv 1$  for all coboundaries<sup>‡</sup>.

<sup>‡</sup>Already in Berthé, Yassawi & Cecchi's paper

▶ Let  $\mathcal{E}(X, u)$  be the graph with edges  $\{(a_L, b_R) : aub \in \mathcal{L}(X)\}$ .

• Let  $x = \ldots 01001010 \cdots \in X_{\text{Fibonnaci}}$ .

 $\mathcal{E}(X,0)$ 



- ▶ Let  $\mathcal{E}(X, u)$  be the graph with vertex set  $\{a_L, a_R : a \in \mathcal{A}\}$  and edge set  $\{(a_L, b_R) : aub \in \mathcal{L}(X)\}$ .
- ▶ X is **dendric** if  $\forall u \in \mathcal{L}(X) : \mathcal{E}(X, u)$  is a tree.

- ▶ Let  $\mathcal{E}(X, u)$  be the graph with vertex set  $\{a_L, a_R : a \in \mathcal{A}\}$  and edge set  $\{(a_L, b_R) : aub \in \mathcal{L}(X)\}$ .
- ▶ X is **dendric** if  $\forall u \in \mathcal{L}(X) : \mathcal{E}(X, u)$  is a tree.
- Example of dendric subshifts: IETs, Arnoux-Rauzy, systems generated by Cassaigne algorithm, among others.
- Several interesting properties about return words, bifix decoding, dimension group, and others.

▶ Let  $\mathcal{E}(X, u)$  be the graph with vertex set  $\{a_L, a_R : a \in \mathcal{A}\}$  and edge set  $\{(a_L, b_R) : aub \in \mathcal{L}(X)\}$ .

▶ X is **dendric** if  $\forall u \in \mathcal{L}(X) : \mathcal{E}(X, u)$  is a tree

▶ **Prop.**§ 
$$p_X(n) := #(\mathcal{L}(X) \cap \mathcal{A}^n) = (#\mathcal{A}-1)n+1.$$

**Theorem.** Let  $X \subseteq \mathcal{A}^{\mathbb{Z}}$  with an ergodic measure  $\mu$  s.t. the entries of  $(\mu([a]) : a \in \mathcal{A})$  are rationally independent. Then:

► 
$$p_X(n) \ge (\#A-1)n+1.$$

▶  $p_X(n) = (\#A - 1)n + 1, \forall n$ , implies that X is dendric.

<sup>§</sup>Berthé et al. Acyclic, connected and tree sets. (2015)

## Example

▶ Let  $\mathcal{E}(X, u)$  be the graph with edges  $\{(a_L, b_R) : aub \in \mathcal{L}(X)\}$ .

► X is **dendric** if  $\mathcal{E}(X, u)$  is a tree for all  $u \in \mathcal{L}(X)$ . For  $a \neq b$ , let

$$\theta_{a,b}: \begin{cases} a & \mapsto ab \\ c & \mapsto c \text{ if } c \neq a \end{cases}$$

(E., Leroy) If X is dendric, then  $X = X_{\tau}$  where  $\tau = (\tau_n)_{n \ge 0}$  satisfies:

- each  $\tau_n$  is one of the  $\theta_{a,b}$ .
- $X_{\tau}^{(n)}$  is dendric for all  $n \ge 0$ .

Therefore, eigenvalues come from trivial coboundaries  $c_n \equiv 1$ .



1. Equicontinuous factors

2. The Maximal Equicontinuous Factor

3. The Kronecker factor

# The Kronecker factor

 Constant-length substitutions: identification of Kronecker factor and its fibers sizes (Dekking '70s).

General substitutive case: Kronecker factor is identified; fiber sizes are much more difficult to understand (Host '80s).

- S-adic with finite alphabet rank: Kronecker factor is identified (Durand *et al.* 2019)
  - Properness becomes irrelevant.

# The Kronecker factor

- Our focus: S-adic with constant-length; no finite alphabet rank.
- Any equicontinuous system is the Kronecker factor of a constant-length S-adic subshift (Williams '84).
- Our focus: Identification of the Kronecker factor and its generic fiber structure.

#### Theorem (Bustos, Mañibo, E.).

- Formula for the rational part of the Kronecker factor.
- Finite alphabet rank: formula for the generic fiber size.

Thank you!