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Motivation

Definition A minimal topological dynamical systems (mini-
mal t.d.s) is a tuple (X, T) s.t.
> X is compact and T: X — X is a homeomorphism;

» {T"x:ne€Z}is dense within X, Vx € X.

Simplest case: equicontinuous systems.

P> Let G be a compact abelian group and a € G. Then,
(G,x — x + a) is called an equicontinuous system.
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Motivation

> An effective method for studying t.d.s. is through extensions
and factors.

» A factor between the t.d.s. (X, T) and (Y,S) is a continuous
map7m: X = Yst. mroT =Som.

Definition. Any minimal t.d.s. (X, T) has a unique maximal
equicontinuous factor (MEF).

> Any other equicontinuous factor of (X, T) is a factor itself
of the MEF.
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Motivation

> An effective method for studying t.d.s. is through extensions
and factors.

» A factor between the t.d.s. (X, T) and (Y, S) is a continuous
map7m: X = Yst. mroT =Som.

Definition. Any minimal t.d.s. (X, T) has a unique maximal
equicontinuous factor (MEF).

> Any other equicontinuous factor of (X, T) is a factor itself
of the MEF.

The MEF captures important dynamical information.
» Weak mixing: 3x,y € X s.t. {(T"x, T"y): n € Z} is dense
in X x X iff the MEF is the trivial one-point system.
» Fibers 7r_1(y) related to nullness, tameness, among others.
» Pisot conjecture states that Pistot substitutional systems are
isomorphic to their MEF.
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Motivation

>» T={zeC:|z| =1}

> If there exists A € T and a factor map gx: (X, T) — (T, -N),

then A is called a continuous eigenvalue.

> The set of continuous eigenvalues has the structure of a
discrete group, and its Pontryagin dual can be identified
with the MEF.
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Motivation

» For any t.d.s. (X, T) there is a (typically non-unique) ergodic
measure .

» This gives rise of an ergodic measure-preserving system
(X, T, p).

» Analogous notions for equicontinuous systems, factors,

eigenvalues and MEF (which in this case are called
measurable eigenvalues and the Kronecker factor!)
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Motivation

>

For any t.d.s. (X, T) there is a (typically non-unique) ergodic
measure .

This gives rise of an ergodic measure-preserving system
(X, T, p).

Analogous notions for equicontinuous systems, factors,
eigenvalues and MEF (which in this case are called
measurable eigenvalues and the Kronecker factor!)

Intrincate interplay between topological and measure-theoretic
notions.

Objective: Study the MEF (Kronecker) factors of minimal
(ergodic) subshifts.
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Substitutions

» Early examples of minimal systems: substitutional subshifts.

Subshifts: (X, S), with S the shift and X C A closed and
S-invariant.

> lIts language L£(X) = {xiXj41...Xj—1:x € X, i < j}.
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Substitutions

» Early examples of minimal systems: substitutional subshifts.

Subshifts: (X, S), with S the shift and X C A closed and
S-invariant.

> lIts language L£(X) = {xiXj41...Xj—1:x € X, i < j}.

s Y

Substitutions.
» Endomorphisms 7: A* — A* s.t. 7(a) # 1,Va € A.
> We assume primitivity: N > 0, Va, b € A, a appears in
N
7V(b).
» L ={u: uoccursin 7"(a) for some n>0,a € A}.
> Let X, = {x € A% : VK, X_jX_k41...xx € L}

> X, is minimal and has a unique ergodic measure p.
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Substitutions

Consider A = {0, 1,2} and

0 ~010
T:¢1 — 102
2 —201
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Substitutions

Consider A = {0,1,2} and

0 — 010
T7:¢1 — 102
2 — 201
0
0 1 0
o1 0|1 0 2|0 1 O
010102010102‘010201010102010
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Substitutions

Consider A = {0,1,2} and

0 ~ 010
T: 41 +— 102
2 — 201

0

0 1

0O 1 0|1 0 2

X = ...010/1020101102010201

010

102010...

c X,
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Substitutions
Consider A = {0,1,2} and

0 — 010
7: 41 — 102
2 201

0

0 1 0
J0 1 0|1 .0 2/0 1 0.€X;

r = ...01010201010201.0201010102010... € X,

<
I

x = S%7(y).
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Early results: F.M. Dekking*

» 7 of constant-length: |7| = |7(a)| = |7(b)|,Va, b € A.

» Example. 7: 0 — 010, 1 — 102, 2 — 201.

*Dekking, F.M. The spectrum of dynamical systems arising from
substitutions of constant length. 1978
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Early results: F.M. Dekking*

» 7 of constant-length: |7| = |7(a)| = |7(b)|,Va, b € A.

» Example. 7: 0 — 010, 1 — 102, 2 — 201.

Theorem. There exists h(7) € N (the height) s.t.
Kro(X;) = Zj;| x Z/h(T)Z, (Zr = |7|-adic integers)
Moreover, 3¢(7) € N (the column number) s.t.

TKro: Xr — Kro(X;)

satisfies Haar({y € Kro(X,) : #m (v) = ¢(7)}) = 1.

*Dekking, F.M. The spectrum of dynamical systems arising from

substitutions of constant length. 1978
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Variable length: B. Host!

» The MEF and Kronecker factors coincide.

» A (letter-) coboundary in X is a morphism c: A* — T s.t.

Va e A,Vaua € L(X;) : c(au) = 1.

> Let £, € Z* defined by £,(a) = |7"(a)|.

tValeurs propres des systemes dynamiques definis par des substitutions de
longueur variable. 1986.
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Variable length: B. Host!

» The MEF and Kronecker factors coincide.

» A (letter-) coboundary in X is a morphism c: A* — T s.t.
Va e A,Vaua € L(X;) : c(au) = 1.

> Let £, € Z* defined by £,(a) = |7"(a)|.

Theorem. X € T is an eigenvalue of X; iff thereis p > 0 and a
coboundary c in X; s.t.

c(a) = lim X vae A

n—o0

The fibers are much more difficult to understand.

tValeurs propres des systemes dynamiques definis par des substitutions de
longueur variable. 1986.
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Variable length: B. Host

Theorem. A € T is an eigenvalue of X, iff thereis p > 0 and a
coboundary c in X; s.t.

c(a) = lim X vae A

n—o0

Let A ={0,1,2,3,4} and

— 34

— 01

— 234
— 34

— 012

\]
A W N R O

» Then exp(27iy/2) is an eigenvalue value defining the
coboundary c(a) =1if a# 1, ¢(1) =0.707....
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Variable length: B. Host

Theorem. A € T is an eigenvalue of X, iff thereis p > 0 and a
coboundary c in X; s.t.

c(a) = lim X vae A

n—o0

Let A ={0,1,2,3,4} and

— 34

— 01

— 234
— 34

— 012

\]
A W N R O

» Then exp(27iy/2) is an eigenvalue value defining the
coboundary c(a) =1if a# 1, ¢(1) =0.707....

» In fact, X, is (conjugate to) the Sturmian of angle v/2.

9/30



Beyond substitutions: S-adic formalism

» Substitutions 7: A* — B* between different alphabets.

> A directive sequence is a sequence of substitutions
T = (75 : n > 0) of the form
AS S AT T A A A
» Abbreviate T, y =T, O Tpy1 0+ 0 TN_1.
» Assume that 7 is primitive: Vn > 0,3dN > n s.t.
a appears in 7, n(b), Va € A,, b e Ap.
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Beyond substitutions: S-adic formalism

» Substitutions 7: A* — B* between different alphabets.
> A directive sequence is a sequence of substitutions
T = (75 : n > 0) of the form

T T T T: Tt
AS 5 A7 1 AG 2 AL A
» Abbreviate T, y =T, O Tpy1 0+ 0 TN_1.

» Assume that 7 is primitive: Vn > 0,3dN > n s.t.
a appears in 7, n(b), Va € A,, b e Ap.

,

Definition. T generates the S-adic subshift:

X ={x € AOZ 1 VK, X|_k,k] appears in 7o ()

Xﬁ”) = Xsnr, with S"7 = (7, Tht1, ... ).

\

for some n > 0,a € A,}.
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S-adic formalism: Sturmians

where each 7, is one of the following substitutions:

0 —~01 0 —~1
Oo: t1:
1 —0 1 — 10

Theorem. X is Sturmian iff X = X, for some 7 = (7, : n > 0)

N\

6, [ 1
6o [
00[
01[
01 L,
00[
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S-adic formalism: Sturmians

N\

Theorem. X is Sturmian iff X = X, for some 7 = (7, : n > 0)
where each 7, is one of the following substitutions:

0 —~01 0 —~1
O t1:
1 —0 1 — 10

01 L,
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S-adic formalism: Sturmians

Theorem. X is Sturmian iff X = X, for some 7 = (7, : n > 0)
where each 7, is one of the following substitutions:

0 01 0 1
902 { ~ 01: { ~

1 —0 1 — 10

N\

3

6 [,

6o [
o1 [
010,
0o
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S-adic formalism: Sturmians

Theorem. X is Sturmian iff X = X, for some 7 = (7, : n > 0)
where each 7, is one of the following substitutions:

0 —~01 0 —~1
902 01:
1 —0 1 — 10

01[ : 1
wi 1.0 1
.

01[
01,

00[
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S-adic formalism: Sturmians

Theorem. X is Sturmian iff X = X, for some 7 = (7, : n > 0)
where each 7, is one of the following substitutions:

0 —~01 0 —~1
902 01:
1 —0 1 — 10

01[ 1
6o [
0y [

“1°00/1 01 0
6, [

00[

EENEEYEEN
o
RN
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S-adic formalism: Sturmians

Theorem. X is Sturmian iff X = X, for some 7 = (7, : n > 0)
where each 7, is one of the following substitutions:

0 —~01 0 —~1
902 01:
1 —0 1 — 10

91[ 1

6o [

8 [
0

i 081 01 0

al
L 00

EENEEYEEN
o
RN

11/30



S-adic formalism: Sturmians

Theorem. X is Sturmian iff X = X, for some 7 = (7, : n > 0)
where each 7, is one of the following substitutions:

0 —~01 0 —~1
O t1:
1 —0 1 — 10

91[ 1

bl 0
w110 1
b1 0 1 | 1
'“1.00(1 010
- 0/0 0100100
:10101011010110101
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Beyond substitutions: S-adic formalism

> We always consider recognizable directive sequences.

P> X is minimal, but it might have many ergodic measures.
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Beyond substitutions: S-adic formalism

> We always consider recognizable directive sequences.

P> X is minimal, but it might have many ergodic measures.

» Any minimal subshift X is equal to X, for some 7.

> A contraction has the form 7" = (75, n,,, ) k>0 for
O=n<n<...
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Linearly recurrent subshifts (LR)

> X is linearly recurrent iff X = X, for some T s.t.

> finitary: there are finitely many different 7,.
> 7 is strongly primitive: a occurs in 7,(b), Vn, a, b.
> the 7, are proper: Ja € A, s.t. 7,(b) starts with a, Vb.

> 7:0 01, 1502, 2 0.

» In Sturmians: substitutions <> quadratic irrationals;
LR < bounded coefficients in the continued fraction.
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Linearly recurrent subshifts (LR)

> X is linearly recurrent iff X = X, for some T s.t.

> finitary: there are finitely many different 7,.
> 7 is strongly primitive: a occurs in 7,(b), Vn, a, b.

> the 7, are proper: Ja € A, s.t. 7,(b) starts with a, Vb.

> 7:0 01, 1502, 2 0.

» In Sturmians: substitutions <> quadratic irrationals;
LR < bounded coefficients in the continued fraction.

~

\

Theorem. X € T is a continuous eigenvalue iff?

Z max [\l — 1] < oo
n>0 aEAn

?Cortéz, Durand, Host, Maass. Continuous and measurable
eigenfunctions of linearly recurrent dynamical Cantor systems. 2003.

J
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Linearly recurrent subshifts (LR)

> LR systems have a unique ergodic measure.

Theorem. X € T is a measurable eigenvalue iff

Z max [\l — 12 < o0
>0 acAn

Continuous and measurable eigenvalues might differ!
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Topological developments

> Let T be a strongly primitive and proper directive sequence.

» Let pref(u) be the set of prefixes of u € A*; £,(u) = |70,n(u)|.

Theorem. \ € T is a continuous eigenvalue iff??

max () — 1] < o0
>0 acA,q1 uaEpref(T,,(a)

“Bressaud, Durand, Maass. Eigenvalues of finite rank Bratteli-Vershik
systems. 2012.
bDurand, Frank, Maass. Eigenvalues of minimal Cantor systems. 2015.
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The non-proper case

> Interval Exchange Transformations:

» Their symbolic codings have nice S-adic expansions.
> S-adic encodes the Rauzy induction.
» Access to Theichmuller related machinery.
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The non-proper case

> Interval Exchange Transformations:
» Their symbolic codings have nice S-adic expansions.
> S-adic encodes the Rauzy induction.
» Access to Theichmuller related machinery.

» Linear involutions.
> Symbolic codings have non-proper S-adic expansions.
» S-adic encodes the Rauzy induction.
> No access to Theichmuller machinery due to symbolic
techniques relying on properness.

16 /30



Coboundaries

» A morphism c: A* — T is a coboundary in X if
c(au) = 1,Vaua € L(X).

» There exists p: A — T s.t. p(a)c(a) = p(b), Vab € L(X).
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Coboundaries

» A morphism c: A* — T is a coboundary in X if
c(au) = 1,Vaua € L(X).

» There exists p: A — T s.t. p(a)c(a) = p(b), Vab € L(X).

» Let £(X) be graph with vertices {a;, ar : a € A} and edges
(ar, br) for ab € L(X).

> Ex. Let X be the Sturmian of angle @ So,
x =...010010--- € X and £(X) N .A? = {00, 01, 10}.

O, Or

1g 1r
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Coboundaries

» A morphism c¢: A* — T is a coboundary in X if
c(au) = 1,Vaua € L(X).

» There exists p: A — T s.t. p(a)c(a) = p(b), Vab € L(X).

» Let £(X) be graph with vertices {a;, ar : a € A} and edges
(ar, br) for ab € L(X).

> Conversely, if p: A — T satisfies p(a) = p(a’) for all ag, ag in
the same connected component of £(X), then
c(a) == p(b)p(a)~! defines a coboundary in X.
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The non-proper case

» Let 7 be finitary (there are finitely many 7,,), straight and
with fully essential words.

Theorem (Berthé, Cecchi,Yassawi 2022). If A is a continuous
eigenvalue, then

c(a) = nILrgo An(2)  defines a weak S-adic coboundary.

> A sufficient condition is provided as well.

» Similar results by P. Mercat (April 2024).
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The non-proper case

> Let T be primitive.

Theorem (Berthé, Cecchi, E.) \is a continuous eigenvalue of
Xr iff there exists (pp(a) € T : a € Ap)n>o0 s-t.

AanKka(“k) _ A
aTEa/)l(k ukakEPQf?‘f);(akH)) | PN(aN)| ( )

converges to 0 as n, N — oo, i.e.,

Ve >0, Vn>>,1:(A) < e for all large enough N > n.

Simpler expressions if T is strongly primitive/finitary/proper.
The pn(a) do not always define coboundaries.
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The non-proper case

> Let T be strongly primitive.

Theorem (Berthé, Cecchi, E.) \is a continuous eigenvalue of
X iff there exists (pn(a) € T : a € Ap)n>o0 s:t.

max max |G — py (ay)| (D)

n<k<N ax €Ak ugaxepref(7i(ak+1))

converges to 0 as n, N — oo, i.e.,

Ve >0, Vn>>,1:(A) < e for all large enough N > n.

Simpler expressions if T is strongly primitive/finitary/proper.
The pnp(a) do not always define coboundaries.
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The non-proper case

> Let T be primitive and proper.

Theorem (Berthé, Cecchi, E.) \is a continuous eigenvalue of
X iff

max max ]AZnSKN[k(Uk) -1 (N)

akEA ugay Epref(rk(ak+1))

converges to 0 as n, N — o0, i.e,

Ve >0,Vn>>,1:(A) < e for all large enough N > n.

Simpler expressions if T is strongly primitive/finitary/proper.
The pp(a) do not always define coboundaries.
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Finite alphabet rank

> Assume that sup,_, . #A4, < oo (finite alphabet rank).

» Then, the pp(a) define coboundaries in pel

s '

Theorem (Berthé, Cecchi, E.) X\ is a continuous eigenvalue of
X+ iff there exist coboundaries ¢, in X7(-") s.t.

max max |)\Z"S‘<<’V€k(uk)— IT cr(u)l (L)

ak €Ay ugaxepref(ty(aky1)) n<k<N
converges to 0 as n, N — oo, i.e.,

Ve >0, Vn>>,1:(A) < e for all large enough N > n.

Similar simpler expressions if T is strongly primitive/finitary/proper.
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Finite alphabet rank

> We are led to study (5(X£n)) :n>0).

» Any p: A — T defining a cob. in X takes at most cc(E(X))
different values.

Already in Berthé, Yassawi & Cecchi’s paper
24/30



Finite alphabet rank

> We are led to study (5(X£")) :n>0).

» Any p: A — T defining a cob. in X takes at most cc(E(X))
different values.

> Examples:

> |ETs: E(X.,(-")) is a tree; hence, all coboundaries are trivial
c, =1.

» Linear involutions: S(X.,(-")) has two connected components;
hence, #{pn(a) - a € A} =2.

» Brun substitutions: For i,j € {0,1,...,d — 1}, i # J:

b i
Uk o kifk#]

Then, E(X7(-")) is connected; hence, ¢, = 1 for all
coboundariest.

Already in Berthé, Yassawi & Cecchi’s paper
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Further examples

> Let £(X, u) be the graph with edges {(ar, br) : aub € L(X)}.

> let x=... 01001010 - - - S XFibonnaci-

£(X,0)

0r Or
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Further examples

> Let £(X, u) be the graph with vertex set {a;,ar : a € A} and
edge set {(ar, br) : aub € L(X)}.

» X is dendric if Yu € L(X) : E(X, u) is a tree.
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Further examples

> Let £(X, u) be the graph with vertex set {a;,ar : a € A} and
edge set {(ar, br) : aub € L(X)}.

» X is dendric if Yu € L(X) : E(X, u) is a tree.

> Example of dendric subshifts: IETs, Arnoux-Rauzy, systems
generated by Cassaigne algorithm, among others.

> Several interesting properties about return words, bifix
decoding, dimension group, and others.
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Further examples

> Let £(X, u) be the graph with vertex set {a;,arg:a € A} and
edge set {(ar, br) : aub € L(X)}.

» X is dendric if Yu € L(X) : E(X, u) is a tree

> Prop.S px(n) = #(L(X)NA") = (#A—1)n+1.

Theorem. Let X C A% with an ergodic measure 4 s.t. the
entries of (p([a]) : a € A) are rationally independent. Then:

» px(n) > (#A—-1)n+1.
> px(n) = (#A —1)n+ 1,Vn, implies that X is dendric.

SBerthé et al. Acyclic, connected and tree sets. (2015)
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Example

> Let £(X, u) be the graph with edges {(ar, br) : aub € L(X)}.

» X is dendric if £(X, u) is a tree for all u € L(X).
For a # b, let

a —ab
Ga,b: X
c —cifc#a

(E., Leroy) If X is dendric, then X = X, where 7 = (7)n>0
satisfies:

> each 7, is one of the 0, .

> X,(-") is dendric for all n > 0.

Therefore, eigenvalues come from trivial coboundaries ¢, = 1.
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1. Equicontinuous factors

2. The Maximal Equicontinuous Factor

3. The Kronecker factor



The Kronecker factor

» Constant-length substitutions: identification of Kronecker
factor and its fibers sizes (Dekking '70s).

» General substitutive case: Kronecker factor is identified; fiber
sizes are much more difficult to understand (Host '80s).

> S-adic with finite alphabet rank: Kronecker factor is identified
(Durand et al. 2019)

» Properness becomes irrelevant.
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The Kronecker factor

» Qur focus: S-adic with constant-length; no finite alphabet
rank.

» Any equicontinuous system is the Kronecker factor of a
constant-length S-adic subshift (Williams '84).

» OQur focus: ldentification of the Kronecker factor and its
generic fiber structure.

Theorem (Bustos, Maiiibo, E.).
» Formula for the rational part of the Kronecker factor.

> Finite alphabet rank: formula for the generic fiber size.
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Thank you!
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